
1

Automatic verification of temporal properties of Air
Traffic Management procedures using hybrid

systems
M.D. Di Benedetto, A. D’Innocenzo, A. Petriccone

Department of Electrical Engineering and Computer Science, Center of Excellence DEWS. University of
L’Aquila, Italy.

Abstract—In an Air Traffic Management context possible
catastrophic events can take place because of an error of a single
agent, e.g. pilot or flight controller, involved in a procedure such
as landing sequence. In this paper we provide a mathematical
framework based on hybrid systems theory for formal modeling
of air traffic management applications. This framework can be
used to model the dynamics of complex multi-agent systems in
normal operative conditions, as well as in abnormal scenarios.
The hybrid system framework allows description and detection
of these errors and their effects on the evolution of procedures,
as well as automatic verification of important properties such as
safety and liveness. The ASEP-In Trail Procedure will be analyzed
to illustrate the proposed methodology. We will describe the use
of Uppaal, a tool that can be used to model ASEP-ITP and to
verify automatically the properties of interest including safety.

Index Terms—Air Traffic Management Procedures Modeling,
Hybrid Systems, In Trail Procedure, Automatic Verification,
Uppaal.

I. INTRODUCTION

THE volume of air traffic in the oceanic airspace is increas-
ing rapidly so that a major efficiency overhaul to manage

air traffic flows is warranted to maintain normal operation.
The new procedures needed to satisfy this requirement have
to increase capacity without affecting safety. Safety has to
be analyzed considering that operations are the result of
interactions between many entities of various types and at
multiple locations. Furthermore air traffic management sys-
tems are characterized by a mixed environment with human-
controlled and computer-controlled subsystems the behaviors
of which evolve following completely different logics that
cannot be represented using the same class of mathematical
models. This complexity can easily be modeled by means of
agents in the context of hybrid system theory. Each decision
taken by a single agent, either human operator or computer
program, influences the actions of all other agents involved. An
hazardous decision induced by a wrong situational awareness
can then be yield a catastrophic event. When modeling this
kind of multi-agent systems all the decision making processes
of each agent and their interactions have to be taken into
account to identify non-nominal situations and act accordingly
to prevent them to evolve into accidents.

In this paper we propose to apply a methodology for formal
reasoning based on hybrid systems theory that provides a
powerful framework to develop multi-agents models. Using

this methodology it is possible to link the changes of the phys-
ical systems behavior with the actions made by each agent.
These actions can be either correct decisions or erroneous
ones, mostly caused by situational awareness errors, taken by
human operators, such as pilots and controllers. In this context
each decision can represent an instantaneous change inside the
continuous dynamics of an agent.

Using hybrid models it is possible to describe the behavior
of single agent by means of discrete states. However, the com-
putation costs related to the automatic verification of properties
of hybrid systems are prohibitive for even small size systems.
Reachability verification [10], [11], observability verification
[12] and model checking [14] for hybrid systems have been in-
tensively studied in the literature. To reduce the complexity of
formal methods such as model checking, abstraction has been
commonly used. Abstraction consists of building a simplified
model with fewer states and/or simpler dynamics, which is
equivalent to the original hybrid automaton with respect to
the property of interest. System equivalence is usually defined
using the notions of language equivalence and bisimulation
[13]. In [15] we proposed a procedure to verify temporal
properties of a hybrid automaton using a timed automaton
abstraction. Timed automata can generally be abstracted into
finite state systems [13], which makes automatic verification of
properties decidable. Model checking tools for timed automata
are available, e.g. Uppaal [16]. We apply the same plane of
action in this paper: we use rectangular automata to model
the ASEP-ITP procedure, translate it into an equivalent timed
automaton, and use Uppaal to automatically verify temporal
properties of the procedure. Using the methodology introduced
in [18], it is possible to use such mathematical framework to
also analyze observability properties of the system.

The paper is organized as follows. In Section 2, a particular
procedure followed in air traffic control, the In Trail Procedure
(ITP), is presented to illustrate our hybrid system framework.
In Section 3, the hybrid model of the airborne procedure
is defined. In Section 4, we introduce timed automata and
Uppaal, a formal verification tool for this kind of systems. In
Section 5, we show how to translate a rectangular automaton
into a timed automaton and use Uppaal to automatically verify
temporal properties of the procedure. Section 6 provides some
concluding remarks.

2

II. DESCRIPTION OF THE IN TRAIL PROCEDURE

The In Trail Procedure (ITP) is part of the Airborne
Separation Assistance Systems (ASAS) area. ASAS embraces
the goal of improving flight management by introducing a
stronger interaction between pilots and controllers. The In
Trail Procedure (ITP) here considered is envisioned as an
Airborne Separation (ASEP) Application which is one of the
four ASAS application categories. ASEP applications involve
the transfer of responsibilities for the separation from the
controller to the flight crew during the execution of the
procedure. This can happen when the flight crew does have
the most appropriate surveillance equipments (i.e. ADS-B and
ASAS equipment) and is therefore able to monitor separation
and act if necessary.

The ASEP-ITP [1], [2] described hereafter is a procedure
that aims at improving flight efficiency along oceanic routes
where procedural control is performed. The procedure pro-
vides a safe and practical method for air traffic controller
to approve, and flight crew to conduct, climb and descent
through different flight levels with less stringent applicability
conditions than today’s operations.

Fig. 1. Example of ITP geometry

A. ITP Criteria

The ASEP-ITP allows climb or descent through only one
flight level for a maximum of 2000 feet in RVSM airspace (and
4000 feet in non-RVSM) and the ITP speed/distance criteria
are designed so that under nominal conditions the proposed
5NM separation minimum is preserved throughout the ITP
manoeuvre. The proposed ITP speed/distance criteria are the
following:
• initiation ITP distance of no less than 10 NM and positive

ground speed differential of no more that 20 kts, or

• ITP distance of no less than 15 NM and positive ground
speed differential of no more that 30 kts.

The ITP encompasses a set of six vertical geometries: lead-
ing climb (as shown in Figure 1), leading descent, following
climb, following descent, combined leading-following climb
and combined leading-following descent. These geometries are
designed on the basis of the relative position of the ITP aircraft
and one or two reference aircraft.

The ITP aircraft must maintain a minimum 300 ft/min of
climb or descent and constant cruise Mach number throughout
the ITP manoeuvre. The reference aircraft must be non-
manoeuvering and it is not expected to manoeuvre during the
ITP. Given these conditions, it can be shown that a 4000 ft
flight level change would result in a reduction in the initial

Fig. 2. ASEP-ITP phases diagram

distance of 4.5 NM assuming a positive ground speed differ-
ential of 20 kts. To ensure that the ITP separation minimum
of 5NM will be guaranteed during the flight level change
under these conditions, the initial distance between the aircraft
must exceed 9.5 NM. So using 10 NM of initial distance the
separation minimum is guaranteed. In the same way it could
be proved that with positive ground speed differential of more
than 20 but less than 30 kts, an initial distance of 15 NM
ensures that ITP separation minimum is respected.

A compact view of the ASEP-ITP phases is illustrated in
Figure 2, and is now described.

B. ITP Initiation phase

In this phase, the flight crew determines that an ITP may
be needed to obtain a higher or lower Flight Level. The crew
identifies the Requested Flight Level and Intermediate Flight
Levels, and verifies that their aircraft performance allows the
ITP Flight Level change. The crew: checks for Same Di-
rection Potentially Blocking Aircraft; verifies qualified ADS-
B data from Potentially Blocking Aircraft; and assesses ITP
Speed/Distance Criteria.

C. ITP Instruction Phase

ATC will always determine if a standard (i.e., non-ITP)
Flight Level change can be approved. If a standard Flight Level
change can be approved, this clearance would be issued instead
of an ITP clearance. The controller checks for the presence of
blocking aircraft at the Intervening Flight Levels and the avail-
ability of the Requested Flight Level. The controller checks
that the Reference Aircraft are the only blocking aircraft and
ensures that the request is consistent with the ITP. Once the
controller has checked that the Positive Mach Differential is
no greater than 0.04 Mach and that the Reference Aircraft
are not expected to maneuver, the controller issues the ITP
clearance. Once the flight crew accepts the clearance, they
become responsible for performing the ITP maneuver.

3

D. ITP Execution Phase
The flight crew initiates the Flight Level change, main-

taining a constant Mach number and a minimum 300 fpm
(or greater if required by regulation) climb or descent rate
throughout the ITP maneuver. The flight crew reports when
the aircraft is established at the new Flight Level.

E. ITP Termination Phase
The ITP is completed when the ITP flight crew reports

established at the new flight level. If the ITP aircraft cannot
successfully complete the ITP once the climb or descent has
been initiated, an abnormal termination occurs.

III. HYBRID MODEL OF THE ITP PROCEDURE

In this section the hybrid model of the ASEP-ITP is
illustrated. The following description provides a general view
of the hybrid systems. Thus, only the basic definitions are
presented in order to facilitate the understanding of the ITP
hybrid model proposed. A particular class of non-deterministic
hybrid systems is represented by the rectangular automata and
is the one that will be used in the hybrid model of ASEP-
ITP. Considered the space Rn with variables x1, · · · , xn, a
rectangular set B of dimension n is the product of n intervals
Bi ⊆ R of the real line, where each Bi is a bounded or
unbounded interval.

Definition 1. (Rectangular Automaton [3]): A rectan-
gular automaton is a tuple H = (Q × X,Q0 ×
X0, U, Y, ε, E,Ψ, η, Inv,G,R) where:
• Q = {q1, q2, ..., qN} is a set of discrete states.
• X ∈ Rn is a set of continuous states.
• Q0 ⊆ Q is a set of initial discrete states.
• X0 ⊆ X is a set of initial continuous states.
• U ⊆ Rm is a set of continuous control input.
• Y ⊆ Rp is the set of continuous observable output.
• {εq}q∈Q associates to each discrete state q ∈ Q the

continuous time-invariant dynamics εq : ẋ = Fq(x) with
output y = gq(x).

• E ⊆ Q×Q is a collection of edges, where each edge e ∈
E is a ordered pair of discrete states, the first component
of which is known as source and is denoted by s(e), while
the second is the target and is denoted by t(e).

• Ψ is the finite set of discrete output symbols
ε, ψ1, ψ2, ..., ψr where ε is the empty string that corre-
sponds to unobservable output.

• η : E → Ψ is the output function, that associates to each
edge a discrete output symbol.

• {Invq}q∈Q associates to each discrete state q ∈ Q an
invariant set Invq ⊆ X .

• {Ge}e∈E associates to each edge e ∈ E a guard set
Ge ⊆ Invs(e).

• {Re}e∈E associates to each edge e ∈ E a reset map
Re : Invs(e) → 2Invt(e) , from Invs(e) ⊂ X to the power
set (i.e. the set of all the subsets) of Invt(e).

that satisfies the following constraints:
• For every discrete state q ∈ Q, the set of initial continu-

ous states X0 ⊆ X and the invariant set Invq ⊆ X are
rectangular sets.

• For every discrete state q ∈ Q, there is a rectangular
set Bq such that the continuous time invariant dynamics
εq : ẋ = Fq(x) ∈ Bq for all x ∈ Rn.

• For every edge e ∈ E, the set Guarde is a rectangular
set, and there is a rectangular set Be and a subset Je ⊆
{1, · · · , n} such that for all x ∈ Rn the reset map is
Re = {(x′

1, · · · , x
′

n) ∈ Rn| for all 1 ≤ i ≤ n, if i ∈ Je

then x
′

i ∈ Be
i else x

′

i = xi}.

Therefore, in a rectangular automaton, the derivative of
each variable stays between two fixed bounds, which can be
different in different discrete states. Then in each discrete
state q ∈ Q the continuous dynamics can be defined as
ẋi ∈ Bq

i ⊆ Bq for all 1 ≤ i ≤ n. With each discrete jump
across an edge e, the value of the variable xi either does not
change if i /∈ Je, or resets non-deterministically to a new
value within some fixed constant interval Be

i ⊆ Be if i ∈ Je.
The hybrid model proposed below embeds a set Σ of

discrete input signals, and each edge e ∈ E is associated to a
symbol σ ∈ Σ that triggers the discrete transition between the
states linked by e. These inputs can be considered as discrete
disturbance or control inputs which model the communication
among the agents.

The ASEP-ITP can be decomposed in various subsystems
representing the agents involved in the procedure, each with
hybrid dynamics modeling its specific operations. It should be
remarked that to exploit the descriptive power of hybrid system
each agent must be considered by itself and subsequently the
effects of their actions on the dynamics of other agents can
be considered composing such models. The agents considered
are:

• Air crew flying of ITP aircraft
• Oceanic controller

The approach used for selecting the agents does not provide
the modeling of the reference aircraft as an agent. The main
reason is that the flight crew of the reference aircraft does
not have the awareness of existence of an ITP manoeuvre
in which it is involved. In fact, there is no communication
between the controller or the flight crew of the ITP aircraft
and the flight crew of the reference aircraft. Furthermore any
hazardous actions of the reference aircraft can be considered
inside the hybrid dynamics of other agents.

The model proposed considers the simplest case of ASEP-
ITP execution where the ITP aircraft requests a climb through
one flight level, with only one leading reference aircraft
involved and without other blocking aircraft. Furthermore,
no wind is assumed. The continuous dynamics used in this
approach are intentionally simplified. In fact due to the con-
figuration of the traffic flows in the oceanic airspace (i.e
organized parallel tracks system) it is possible to focus on
longitudinal and vertical dynamics without considering the
lateral dynamics.

Before defining the hybrid models, the following variables
are introduced:

1) zi initial flight level of the aircraft
2) zf requested flight level of the ITP aircraft
3) x0 the initial longitudinal position of the ITP aircraft

4

4) xr0 longitudinal position of the reference aircraft at the
moment of the criteria evaluation

5) vG0 the ground speed of the ITP aircraft at the moment
of the criteria evaluation

6) vGr0 the ground speed of the reference aircraft at the
moment of the criteria evaluation

7) Mi assigned Mach number for the ITP aircraft
8) a speed of sound, assumed as a constant value
9) vx0 the initial longitudinal airspeed of the ITP aircraft

defined as vx0 = Mia
10) vz,max maximal vertical speed of the ITP aircraft

Furthermore the following interesting areas of the airspace can
be identified:

1) A safe region in which the ITP aircraft performing
the ITP manoeuvre respects the ITP minimum distance
separation. The safe zone is defined as ΩS = {(x, z) :
x ∈ [−∞, xr − 5], z ∈ (zi, zf)}.

2) Thus, an unsafe zone can be defined as follows: ΩU =
{(x, z) : x ∈ [xr − 5,+∞], z ∈ (zi, zf)}.

The agent Hp Pilot Flying of ITP Aircraft can be described
using a model based on Definition 1. The following are the
objects of the system:
• Q = {q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13} is

the set of discrete states each associated with a node
inside the graph depicted in Figure 3;

• X = {(x, z, ẋ, ż) : x ∈ R+
0 , z ∈ R+, ẋ ∈ [vx0 −

∆K, vx0 + ∆K], ż ∈ [0, vz,max]} is the set of the con-
tinuous state values where x represents the longitudinal
position of the aircraft expressed in nautical miles, z the
altitude of the aircraft expressed in hundred of feet (i.e.
flight level inside the International Standard Atmosphere),
ẋ is the airspeed along the longitudinal position expressed
in Knots and ż is the airspeed along the vertical position
(i.e., the vertical speed) expressed in feet per minute;

• The initial discrete state is q1, the initial continuous state
is given by (x0, zi, vx0, 0);

• The continuous dynamics are the followings:
- Fq1 = {ẋ ∈ [vx0 − ∆Kc, vx0 + ∆Kc], ż = 0, ẍ ∈

[−0.001, 0.001], z̈ = 0} where ∆Kc = 0.001a

- Fq7 = {ẋ ∈ [vx0 − ∆Km, vx0 + ∆Km], ż ∈
[300, vz,max], ẍ ∈ [−0.005, 0.005], z̈ ∈
[−0.001, 0.001]} where ∆Km = 0.01a

- Fq8 = {ẋ ∈ [vx0 − ∆Km, vx0 + ∆Km], ż ∈
[300, vz,max], ẍ ∈ [−0.005, 0.005], z̈ ∈
[−0.001, 0.001]} where ∆Km = 0.01a

- Fq9 = {ẋ ∈ [vx0 − ∆Ma, vx0 + ∆Ma], ż ∈
[50, vz,max], ẍ ∈ [−0.005, 0.005], z̈ ∈
[−0.001, 0.001]} where ∆M = 0.04

- Fq10 = {ẋ ∈ [(Mi − ∆M)a, (Mi + ∆M)a], ż =
0, ẍ ∈ [−0.001, 0.001], z̈ = 0} where ∆M = 0.04

- Fq12 = {ẋ ∈ [vx0 −∆Km, vx0 + ∆Km], ż = 0, ẍ ∈
[−0.001, 0.001], z̈ = 0} where ∆Km = 0.01a

- Fq13 = {ẋ ∈ [vx0 − ∆Ma, vx0 + ∆Ma], ż ∈
[300, vz,max], ẍ ∈ [−0.01, 0.01], z̈ ∈

[−0.005, 0.005]} where ∆M = 0.04
- Fqi = Fq1 for i = 2, 3, 4, 5, 6, 11

• Σ = {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9}
⋃
{ε} is the set

of discrete inputs, where σ1 represents the verification of
ITP pre-conditions, σ2 represents the reassessment failed
after a clearance reception, σ3 represents the ITP criteria
are not verified, σ4 means the ITP criteria verified, σ5

represents the clearance denied, σ6 means the clearance
issued, σ7 means detection of an abnormal event, σ8

represents a situational awareness error, σ9 is an ASAS
conflict detection communication, ε is the verification of
an internal event;

• Ψ = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7} ∪ {ε} is the set of
discrete outputs, where ψ1 means the clearance rejected
by the crew, ψ2 represents the clearance request, ψ3

represents the setting of flight parameters for the climb,
ψ4 means the abnormal termination communication by
the crew to the controller, ψ5 means the report established
at the new flight level, ψ6 is the reversion to cruise
operation, ψ7 is the setting of flight parameters to solve
an ASAS conflict detection, ε is associated with an
unobservable transition;

• E ⊆ Q × Q is the set of transitions given by the graph
depicted in Figure 3. A label σ ∈ Σ is associated to each
edge as shown in Figure 3;

• η : E → Ψ the discrete output function defined by the
graph depicted in Figure 3;

• The domains of the discrete states are the following:

- Invq1 = {(x, z, ẋ, ż) : x ∈ R+
0 , z = zi, ẋ ∈ [vx0 −

∆Kc, vx0 + ∆Kc], ż = 0} where ∆Kc = 0.001a

- Invq7 = {(x, z, ẋ, ż) : {(x, z) ∈ ΩS}
⋃
{x ∈

R+
0 ∩ z = zi}, ẋ ∈ [vx0 −∆Km, vx0 + ∆Km], ż ∈

[300, vz,max]} where ∆Km = 0.01a

- Invq8 = {(x, z, ẋ, ż) : (x, z) ∈ ΩS ∪ ΩU

⋃
{x ∈

R+
0 ∩ z = zi}, ẋ ∈ [vx0 −∆Km, vx0 + ∆Km], ż ∈

[300, vz,max]} where ∆Km = 0.01a

- Invq9 = {(x, z, ẋ, ż) : (x, z) ∈ ΩS ∪ΩU , ẋ ∈ [vx0−
∆Ma, vx0+∆Ma], ż ∈ [50, vz,max]} where ∆M =
0.04

- Invq10 = {(x, z, ẋ, ż) : x ∈ R+
0 , z = zf , ẋ ∈ [(Mi −

∆M)a, (Mi + ∆M)a], ż = 0} where ∆M = 0.04

- Invq12 = {(x, z, ẋ, ż) : x ∈ R+
0 , z = zf , ẋ ∈ [vx0 −

∆Km, vx0 + ∆Km], ż = 0} where ∆Km = 0.01a

- Invq13 = {(x, z, ẋ, ż) : (x, z) ∈ ΩS , ẋ ∈
[vx0−∆Ma, vx0 +∆Ma], ż ∈ [300, vz,max]} where
∆M = 0.04

- Invqi = Invq1 for i = 2, 3, 4, 5, 6, 11
• The guards are the empty set for all the discrete transi-

tions except for:

- G(q7, q9) = {ẋ > vx0+∆Km ∪ ẋ < vx0−∆Km ∪
ż < 300} where ∆Km = 0.01a

- G(q8, q9) = G(q7, q9)

5

- G(q7, q12) = {z = zf}

- G(q8, q12) = G(q9, q12) = G(q13, q12) = G(q7, q12)

- G(q12, q10) = {ẋ > vx0+∆Km ∪ ẋ < vx0−∆Km}
where ∆Km = 0.01a

• The reset function is always the identity function excepted
for:

- R(q8, q13) = {xq13 = xq8 , zq13 = zq8 , ẋ ∈
[vx0−∆Ma, vx0 +∆Ma], ż ∈ [300, vz,max]} where
∆M = 0.04

- R(q9, q13) = R(q8, q13)

- R(q7, q12) = {xq12 = xq7 , zq12 = zq7 , ẋq12 =
ẋq7, żq12 = 0}

- R(q8, q12) = R(q9, q12) = R(q13, q12) = R(q7, q12)

- R(q7, q11) = {xq11 = xq7 , zq11 = zi, ẋq11 =
ẋq7, żq11 = 0}

- R(q8, q11) = R(q9, q11) = R(q13, q11) = R(q7, q11)

Fig. 3. Direct graph of pilot flying of ITP aircraft agent.

IV. UPPAAL AND TIMED AUTOMATA

Uppaal [16] is a toolbox for verification of real-time sys-
tems jointly developed by Uppsala University and Aalborg
University. The tool is designed to verify systems that can be
modeled as networks of timed automata extended with integer
variables, structured data types, and channel synchronization.
This model-checker is based on the theory of timed automata
and its modeling language offers additional features such as
bounded integer variables and urgency. A timed automaton
is essentially a finite automaton (that is a graph containing a
finite set of nodes or locations and a finite set of labeled edges)
extended with real-valued variables. Such an automaton may
be considered as an abstract model of a timed system. The
query language of Uppaal, used to specify properties to be
checked, is a subset of CTL (Computation Tree Logic, [17]).

A. The Modeling Language

A timed automaton is a finite-state machine extended with
clock variables, in Uppaal a system is modeled as a network of
several such timed automata in parallel. The model is further
extended with bounded discrete variables that are part of the
state. These variables are used as in programming languages:
they are read, written, and are subject to common arithmetic
operations.

A state of the system is defined by the locations of all
automata, the clock constraints, and the values of the discrete
variables. Every automaton may fire an edge separately or
synchronize with another automaton, which leads to a new
state. We give the basic definitions of the syntax and semantics
for timed automata: C is a set of clocks and B(C) is the set
of conjunctions over simple conditions of the form x ./ c or
x−y ./ c, where x, y ∈ C, c ∈ N and ./∈ {<,≤,=, >,≥}.

Definition 2. (Timed Automaton): A timed automaton is a
tuple (L, l0, C,A,E, I) where L is a set of locations, l0 ∈ L
is the initial location, C is the set of clocks, A is a set of
actions and co-actions, E ⊆ L × A × B(C) × 2C × L is a
set of edges between locations with an action, a guard and a
set of clocks to be reset, I : L→ B(C) assigns invariants to
locations.

We now define the semantics of a timed automaton. A clock
valuation is a function u : C → R≥0 from the set of clocks to
the non-negative reals. Let RC be the set of all clock valuations
and u0(x) = 0 for all x ∈ C. We will abuse the notation by
considering guards and invariants as sets of clock valuations,
writing u ∈ I(l) to mean that u satisfies I(l).

Definition 3. (Semantics of Timed Automaton): Let
(L, l0, C,A,E, I) be a timed automaton. The semantics is
defined as a labeled transition system 〈S, s0,→〉 where S ⊆
L × RC is the set of states, s0 = (l0, u0) is the initial state,
→⊆ S × {R≥0 ∪A} × S is the transition relation such that:

• (l, u)→d (l, u+d) if ∀d′
: 0 ≤ d′ ≤ d⇒ u+d

′ ∈ I(l);
• (l, u)→a (l

′
, u

′
) if there exists e = (l, a, g, r, l

′
) ∈ E s.t.

u ∈ g, u′
= [r 7→ 0]u, u

′ ∈ I(l);

where for d ∈ R≥0, u + d maps each clock x in C to the
value u(x) + d, and [r 7→ 0]u denotes the clock valuation
which maps each clock in r to 0 and agrees with u over C\r.

The Uppaal modeling language extends timed automata
with the following additional features:

• Templates: automata are defined with a set of parameters
that can be of any type;

• Binary synchronization: channels are declared as
chan c. An edge labeled with c! synchronizes with
another labeled c? ;

• Broadcast channels: are declared as
broadcast chan c. In a broadcast synchronization
one sender c! can synchronize with an arbitrary number
of receivers c?; any receiver than can synchronize in the
current state must do so. If there are no receivers, then
the sender can still execute the c! action, i.e. broadcast
sending is never blocking;

6

Expressions in Uppaal range over clocks and integer vari-
ables. Expressions are used with the following labels:
• Guard: is a particular expression satisfying the follow-

ing conditions: it is side-effect free;it evaluates to a
boolean; only clocks, integer variables,and constants are
referenced(or arrays of these types); clocks and clock
differences are only compared to integer expressions;
guards over clocks are essentially conjunctions.

• Synchronization: a synchronization label is either on the
form Expression! or Expression? or is an empty label. The
expression must be side-effect free, evaluate to a channel,
and only refer to integers, constants and channels;

• Assignment: an assignment label is a comma separated
list of expressions with a side-effect; expressions must
only refer to clocks, integer variables, and constants and
only assign integer values to clocks;

• Invariant: an invariant is an expression that satisfies
the following conditions: is side-effect free; only clock,
integer variables, and constants are referenced; it is a
conjunction of conditions of the form x < e or x <= e,
where x is a clock reference and e evaluates to an integer.

B. The Query Language

The main purpose of a model checker is verify the model
w.r.t. a requirement specification. Like the model, the re-
quirement specification must be expressed in a formally well-
defined and machine readable language. Several such logics
exist in the scientific literature, and Uppaal uses a simplified
version of CTL [17].

Like in CTL, the query language consists of path formulae
and state formulae. State formulae describe individual states,
whereas path formulae quantify over paths or traces of the
model. Path formulae can be classified into reachability, safety
and liveness. A state formula is an expression that can be
evaluated for a state without looking at the behavior of the
model. For instance, this could be a simple expression, like
i == 7, that is true in a state whenever i equals 7. The
syntax of state formulae is a superset of that of guards, i.e.,
a state formula is a side-effect free expression, but in contrast
to guards, the use of disjunctions is not restricted. It is also
possible to test whether a particular process is in a given
location using an expression on the form P.q1, where P is
a process and q1 is a location.
• Reachability Properties: Reachability properties are the

simplest class of properties. They ask whether a given
state formula, ϕ, possibly can be satisfied by any reach-
able state. Does a path exist, starting from the initial state,
such that ϕ is eventually satisfied? Reachability proper-
ties are often used while designing a model to perform
sanity checks. We express that some state satisfying ϕ
should be reachable using the path formula E �ϕ, and in
Uppaal we write this property using the syntax E <> ϕ.

• Safety Properties: Safety properties are of the form
something bad will never happen. A variation of this
property is that something will possibly never happen.
For instance, when playing a game, a safe state is one in
which we can still win the game, hence we will possibly

not loose. In Uppaal these properties are formulated
positively, e.g. something good is invariantly true. Let
ϕ be a state formula, we express that ϕ should be true in
all reachable states with the path formulae A[] ϕ, whereas
E[] ϕ means that there should exist a maximal1 path such
that ϕ is always true.

• Liveness Properties: Liveness properties are of the form
something will eventually happen, e.g. in a model of a
communication protocol we may require that any mes-
sage that has been sent should eventually be received.
Liveness is expressed with the path formula A <> ϕ,
meaning that ϕ is eventually satisfied. The most useful
form is the leads to or response property, which can be
expressed as ϕ → ψ, namely whenever ϕ is satisfied,
then eventually ψ will be satisfied; in the communica-
tion protocol example, whenever a message is sent then
eventually it will be received.

V. ASEP-ITP MODEL IN UPPAAL

To this point we can represent the hybrid model of the
ASEP-ITP as a timed automaton, so that we can verify of
the properties.

A. From Rectangular Automata to Timed Automaton

It is possible to translate a rectangular automaton into a
timed automaton, obtaining an equivalent system that pre-
serves all the temporal properties of the original system. This
is due to the fact that both rectangular automata and timed
automata admit a finite bisimulation [13]. This implies that,
given any rectangular automaton, it is possible to construct
a bisimilar (and thus equivalent) timed automaton. The main
issue is translating the dynamics and guards of the rectangular
automaton into clocks and guards of the timed automaton.
However, since rectangular automata are characterized by very
simple dynamics, such computation can be performed in a
closed form, as will be illustrated in the next section, in the
definition of the timed automaton that models the Pilot Flying
of ITP Aircraft.

Remark 1. For instance, we stress that the translation from
rectangular automata to timed automata also preserves ob-
servability properties, that is the rectangular automaton is ob-
servable if and only if the timed automaton is observable. The
implication is in fact symmetric, because of the equivalence
of the two systems.

B. Pilot flying of ITP aircraft Agent

The hybrid system of the pilot can be defined like a timed
automaton in the following way:

Pilot = (L, l0, C,A,E, I)

where:
• L is the set of following locations: Cruise, ITP Aborted,

ITP Initiation, Wait, ITP Instruction, ITP Rejected, ITP

1A maximal path is a path that is either infinite or where the last state has
no outgoing transitions.

7

Denied, ITP Standard Execution, Abnormal Termina-
tion, NITPC CExe(Non ITP Criteria compliant execu-
tion), ITP Termination, Wrong Execution, Exe ASAS
Conf (Execution after ASAS conflict detection), Wrong
Termination.

• l0 = {Cruise} is the initial location;
• C = {t1, t2} is the set of clocks and it is used in the

guard of some locations. In particular we have that:
- t1 = zfin−zin

żmin
= 40000ft−36000ft

300fpm = 13 minutes
- t2 = zfin−zin

żmax
= 40000ft−36000ft

1000fpm = 4 minutes
supposing that the aircrafts carry out a change of the level
of flight passing from 36000 ft to 40000 ft with a minimal
speed of 300 fpm and a maximum of 1000 fpm;

• A is a set of actions and co-actions, defined in the Figure
4;

• E is a set of edges between locations, defined in Figure
4;

• I = {x ≤ 10} assigns invariants to locations, in particular
to ITP Instruction.

Fig. 4. Model of the pilot under Uppaal

C. Scenario: Wrong Execution of ITP with ASAS conflict
detection and Wrong Termination

We apply our verification procedure to a specific scenario
of the ITP, that models an error in the procedure. Initially, the
flight is in its cruise phase and the pilot consider the will
to execute an ASEP-ITP. If the pre-conditions are verified
we enter in the ITP Initiation phase. In this phase the pilot
checks the ITP Criteria. The ITP speed distance criteria are
checked using the data vG0, vGr0 and x0 − xr0. Basing on
his situational awareness the crew verifies that all the criteria
are satisfied. Thus he communicates the request of an ITP
clearance to the controller. The controller also verifies the
ITP Criteria and gives to the aircrew the clearance to execute
the manoeuvre. The pilot starts the manoeuvre respecting the
performances envelope (Standard ITP Execution) but during
the execution of the manoeuvre the pilot does not keep the
Mach number constant, exceeding the bound of 0.01 Mach
error (Wrong Execution). The ASAS technical system is
functioning properly so it detects the possibility of a conflict
and generates an alert. The technical system also assists the
pilot providing information on how to resume the standard
execution. In this phase (Execution after ASAS conflict de-
tection) the pilot can temporarily change the vertical speed or

the Mach number to solve the possible conflict. The pilot must
revert to the initial Mach number after the conflict alarm is
solved. We assume that the pilot forgets to revert the speed
of the aircraft to the initial Mach number. When the aircraft
stabilizes in the requested flight level (ITP termination) the
pilot communicates to the ATC the establishment at that flight
level. Without having any information the flight is in an
hazardous situation. In fact, the immediate verification of a
guard condition which checks if the Mach has changed, brings
to a (Wrong Execution). The graph of Figure 5 enhances this
path.

Fig. 5. Wrong Execution of ITP with ASAS conflict detection

Once described this scenario, we can analyze the Reach-
ability properties of the pilot. In order to perform automatic
verification with Uppaal, we need to formalize these properties
using the appropriate syntax:
• E <> ASEP Pilot.Cruise: does there exist a path starting

from the initial state, such that Cruise is eventually
satisfied along that path? Yes, the property is satisfied;

• E[] ASEP Pilot.Cruise: does there exist a maximal path
such that Cruise is always satisfied? Yes, the property is
satisfied;

• E <> ASEP Pilot.ITPInstruction: does there exist a path
starting at the initial state, such that ITP Instruction is
eventually satisfied along that path? Yes, the property is
satisfied;

• E[] ASEP Pilot.ITPInstruction: does there exist a max-
imal path such that ITP Instruction is always satisfied?
No, the property is not satisfied.

Remark 2. The property E <> ASEP Pilot.Cruise means
that the location Cruise can be reached, namely such that the
node Cruise will eventually be touched by a path.

Remark 3. The property E[] ASEP Pilot.Cruise means that
the system can reach a safe state without passing through
dangerous situations. This type of property leads to determine
whether a safe state can be reached without passing through
unsafe states.

The same reasoning applies to the other properties for ITP
Instruction.

VI. CONCLUSION

We presented a hybrid system framework for safety mod-
eling in air traffic management. The need to develop new

8

sophisticated modeling methodologies originates from new
challenges in safety and from the increasing inherent com-
plexity in the airborne procedures. A specific procedure, the
ASEP-ITP, was investigated to show how this framework
can be used to represent a complex multi-agent application
in which a wide set of possible abnormal scenarios may
occur. Possible catastrophic events can take place due to
e.g. unnoticed misunderstanding between agents involved. We
demonstrated that our hybrid system framework can be used
to describe and detect abnormal conditions and to understand
and quantify their effects on the evolution of the procedure. In
particular, we used Uppaal, a formal verification tool for timed
automata, to verify important properties of the procedure such
as reachability, which are essential in determining its safety.
The use of appropriate abstractions extends the applicability
of formal verification to realistic examples.

ACKNOWLEDGMENTS

This work was partially supported by European Commission
under STREP project n.TREN/07/FP6AE/S07.71574/037180
iFLY. The authors are grateful to Pascal Lezaud and Thierry
Miquel for hosting Marco Colageo and Antonio Di Francesco
at ENAC for a stage, during which the description of the
ASEP-ITP procedure was developed.

REFERENCES

[1] ”D6.1b Qualitative Risk Assessment for ASEP-ITP”, ASSTAR Projects,
01 February 2007 v.1.0

[2] ”In-Trail Procedure in Procedural Airspace (ATSA-ITP) Application
Description”, Package I Requirements Focus Group, 21 June 2007 v8.0

[3] R. Alur, T.A. Henzinger, G. Laferriere and G.J. Pappas, ”Discrete
Abstractions of Hybrid Systems”, Proceedings of the IEEE, vol. 88,
NO. 7, July 2000

[4] A. Dijkstra, ”Resilience Engineering and Safety Management Systems
in Aviation”, KLM Royal Dutch Airlines / TU Delft

[5] E. Hollnagel, O. Goteman, ”The Functional Resonance Accident Model”
[6] M.D. Di Benedetto, S. Di Gennaro, A. D’Innocenzo, ”Error

Detection Within a Specific Time Horizon”, public delivarable
D7.4, project IST-2001-32460 HYBRIDGE, January 26,2005,
http://www.nlr.nl/public/hosted-sites/hybridge

[7] M. D. Di Benedetto, S. Di Gennaro, A. DInnocenzo,
”Situation Awareness Error Detection” , Public Deliverable
D7.3, Project IST200132460 HYBRIDGE, August 18, 2004,
http://www.nlr.nl/public/hostedsites/hybridge.

[8] Johan Bengtsson - Wang Yi - Uppsala University, Timed Automata:
Semantics, Algorithms and Tools, Uppsala University, 2003.

[9] Gerd Behrmann - Alexandre David - Kim G. Larsen, A Tutorial on Up-
paal, Department of Computer Science, Aalborg University, Denmark,
2004.

[10] A. Girard. Reachability of uncertain linear systems using zonotopes. In
M. Morari and L. Thiele, editors, Hybrid Systems: Computation and
Control, volume 3414 of Lecture Notes in Computer Science, pages
291305. Springer Verlag, 2005.

[11] Zhi Han and B. H. Krogh. Reachability analysis of largescale affine
systems using lowdimensional polytopes. In J. Hespanha and A. Tiwari,
editors, Hybrid Systems: Computation and Control, volume 3927 of
Lecture Notes in Computer Science, pages 287301. Springer Verlag,
2006.

[12] A. DInnocenzo, M. D. Di Benedetto, and S. Di Gennaro. Observability
of hybrid automata by abstraction. In J. Hespanha and A. Tiwari, editors,
Hybrid Systems: Computation and Control, volume 3927 of Lecture
Notes in Computer Science, pages 169183. Springer Verlag, 2006.

[13] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstrac-
tions of hybrid systems. Proccedings of the IEEE, 88(2):971984, July
2000.

[14] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification
of embedded systems. IEEE Transactions on Software Engineering,
22:181201, 1996.

[15] A. DInnocenzo, A. A. Julius, G. J. Pappas, M. D. Di Benedetto, and
S. Di Gennaro. Verification of temporal properties on hybrid automata
by simulation relations. In Proceedings of the 46th IEEE Conference on
Decision and Control. New Orleans, Louisiana, USA., 1214 December
2007.

[16] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1):134152,
December 1997.

[17] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 2002.

[18] Marco Colageo, Antonio Di Francesco. ICRAT 2008 - 3rd International
Conference on Research in Air Transportation, Fairfax, Virginia, USA.
June 01-04 2008.

	Introduction
	Description of the In Trail Procedure
	ITP Criteria
	ITP Initiation phase
	ITP Instruction Phase
	ITP Execution Phase
	ITP Termination Phase

	Hybrid Model of the ITP procedure
	UPPAAL and Timed Automata
	The Modeling Language
	The Query Language

	ASEP-ITP Model in Uppaal
	From Rectangular Automata to Timed Automaton
	Pilot flying of ITP aircraft Agent
	Scenario: Wrong Execution of ITP with ASAS conflict detection and Wrong Termination

	Conclusion
	References

